319 Bulb Switcher
319. Bulb Switcher
题目: https://leetcode.com/problems/Bulb-Switcher/
难度:
Medium
思路
bulb代表第一轮结束后的所有灯亮灭的情况,从第二轮开始 - 如果是最后一轮,则bulb的最后一个灯要switch - 对于其他轮,相应的第i-1+C(i)个灯要siwitch,且C为常数,i-1+C(i)必须<=n-1
但是发现这样提交会超时 Last executed input: 999999
class Solution(object):
def bulbSwitch(self, n):
"""
:type n: int
:rtype: int
"""
bulb = [1] * n
for i in range(2,n+1):
for x in range(i-1, n, i):
bulb[x] = 1 if bulb[x] == 0 else 0
return bulb.count(1)
原来,这是一道智商碾压题:
A bulb ends up on iff it is switched an odd number of times. Bulb i is switched in round d iff d divides i. So bulb i ends up on iff it has an odd number of >divisors. Divisors come in pairs, like i=12 has divisors 1 and 12, 2 and 6, and 3 and 4. Except if i is a >square, like 36 has divisors 1 and 36, 2 and 18, 3 and 12, 4 and 9, and double divisor 6. So bulb >i ends up on iff and only if i is a square. So just count the square numbers.
大概解释一下,当一个灯泡被执行偶数次switch操作时它是灭着的,当被执行奇数次switch操作时它是亮着的,那么这题就是要找出哪些编号的灯泡会被执行奇数次操作。
现在假如我们执行第i次操作,即从编号i开始对编号每次+i进行switch操作,对于这些灯来说, 如果其编号j(j=1,2,3,⋯,n)能够整除i,则编号j的灯需要执行switch操作。 具备这样性质的i是成对出现的,比如: - 12 = 1 * 12, - 12 = 2 * 6 - 12 = 3 * 4
所以编号为12的灯,在第1次,第12次;第2次,第6次;第3次,第4次一定会被执行Switch操作,这样的话,编号为12的灯执行偶数次switch,肯定为灭。 这样推出,完全平方数一定是亮着的,因为它有两个相同的因子,总因子数为奇数,如36 = 6 * 6,所以本题的关键在于找完全平方数的个数。
class Solution(object):
def bulbSwitch(self, n):
"""
type n: int
rtype: int
"""
# The number of full squares.
return int(math.sqrt(n))